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Overview of Cerchiello et al. (2018)

Agenda
Cerchiello et al. (2018) is part of a larger agenda to understand
and measure the stability of the banking system (linkages, fragility).

Methodological Contribution
Combine “traditional” (financial) and “non-traditional” (text) data via

I Dimension reduction of bank-related news via doc2vec
I Neural network to combine data and predict bank failures

Question
Can this methodology allow us to use non-traditional data for
causal inference?
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Application: The Effects of Monetary Policy

What are the effects of monetary (interest rate) policy?

yt = α + β Federal Funds Ratet + εt

Why can’t we run this regression? Endogeneity, e.g., other
economic factors may drive both yt and the Fed’s policy.

Romer and Romer (2004) (R&R)
Only study effects of changes in interest rates that are deviations
from systematic responses to economic variables.

Problem
Controlling for only a handful of variables may not remove all of the
endogenous variation in interest rates (see Ramey (2016))
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Controlling for More

Potential Solution
Let policymakers tell us what they’re responding to. Incorporate

I Numerical data Fed forecasts of macroeconomic variables
(R&R Greenbook variables)

I Text data Fed discussions of monetary policy decisions
(FOMC transcripts using doc2vec)

Use a neural network or LASSO, together with numerical and text
data, to predict interest rate at each meeting; use residual as
“Romer & Romer text-based monetary shock”

Details
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The Shocks
Monetary policy shocks are the residuals from the following regression
(estimated via LASSO):

∆Fed Funds Targett = α + β′[Fed Forecasts]t + εt

+ φ′[Doc2Vec Transcripts]t + εt
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Do we Need the Greenbook?
Suppose we were instead to condition on the FOMC’s information set
using only its discussions:

∆Fed Funds Targett = α + φ′[Doc2Vec Transcripts]t + εt
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Response to a 1pp Increase in FFR
Federal Funds Rate
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Conclusions

The innovative methodology of Cerchiello et al. (2018) allows for a
new analysis of the effects of monetary policy.

I Incorporating additional data changes estimated responses to
monetary policy by very little.

I “Price puzzle” remains—do the transcripts add more
information? They seem to effectively add as much as
traditional (Greenbook) variables.

I Might the transcripts also add too much information (we don’t
want to remove variation resulting from policymaker
preferences)
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End. Thanks!
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Supplemental Slides
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Details on Implementation

I For the shocks estimated using textual input, the model was selected using
LASSO as implemented in Stata by Ahrens et al. (2019). I perform a 10-fold
cross-validation to select the shrinkage parameter that gives the smallest
mean-squared prediction error, λ ≈ 24. Working with a 1-layer neural
network produced similar results, so the LASSO framework was retained for
its simplicity.

I Text processing. I estimate the transcript embeddings using the doc2vec
algorithm of Le and Mikolov (2014), as implemented in Python’s gensim
package (Řehůřek and Sojka, 2010), with 500 dimensions, 40 epochs of
training, and a minimum word occurrence of 2.

I The external-instruments SVAR was implemented using the code from
Montiel Olea et al. (2018), with asymptotic standard errors reported.

I Data. Greenbook data is from the Philadelphia Fed’s website. Transcripts
are from all regularly-scheduled FOMC meetings, from the Federal Reserve
Board’s website. Macroeconomic data are from the St. Louis Fed’s FRED
portal (the mnemonics used are DFEDTAR, DFEDTARL, DFEDTARU,
FEDFUNDS, INDPRO, UNRATE, WTISPLC, and CPIAUCSL).

Back
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GB + Text, 1969–1996 (Original R&R Sample)
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GB + Text, 1983–2007 (following Ramey (2016))
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Text Only 1969–1996 (Original R&R Sample)
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Text Only 1983–2007 (following Ramey (2016))
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Response to a 1pp Increase in FFR
1969–1996 (Original R&R Sample)

Federal Funds Rate
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Response to a 1pp Increase in
FFR 1983–2007 (following Ramey (2016))

Federal Funds Rate
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